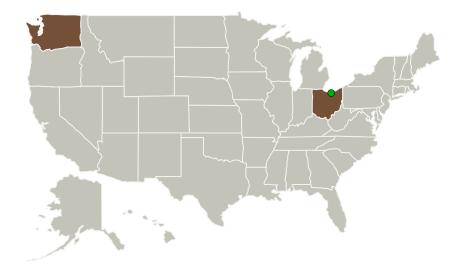
## Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II




Completed Technology Project (2010 - 2012)

## **Project Introduction**

Based on our proposed innovations and accomplished work in Phase I, we will focus on developing the new MAC protocol and hybrid routing protocol for lunar surface networks and orbit access. The new MAC protocol includes a novel mechanism of TDMA overlaying CSMA/CA and ensures scalable throughput and QoS performance in the hierarchical multihop wireless mesh networks proposed for lunar surface networks. The new MAC protocol will be implemented on top of a reconfigurable 802.11 radio and is compatible to legacy 802.11 networks. It also includes advanced features like efficiency power management, adaptive channel width for improving receiver sensitivity and communication range, and error control for eliminate errors due to radiation and radio burst. The hybrid routing protocol combines the advantages of ad-hoc on-demand distance vector (AODV) routing and disruption/delay tolerant network (DTN) routing. Its performance is significantly better than AODV or DTN, and is particularly effective to wireless networks with intermittent links, as in lunar surface networks and orbit access. In this proposal a detailed prototyping plan to implement the developed protocols is also presented. By the end of Phase II, a prototype system will be available for demonstrating the delivered technical objectives proposed in this proposal.

#### **Primary U.S. Work Locations and Key Partners**





Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II



Completed Technology Project (2010 - 2012)

| Organizations<br>Performing Work | Role         | Туре     | Location   |
|----------------------------------|--------------|----------|------------|
| Teranovi                         | Lead         | Industry | Kirkland,  |
| Technologies                     | Organization |          | Washington |
| Glenn Research Center(GRC)       | Supporting   | NASA     | Cleveland, |
|                                  | Organization | Center   | Ohio       |

| Primary U.S. Work Locations |            |  |
|-----------------------------|------------|--|
| Ohio                        | Washington |  |

#### **Project Transitions**

O

January 2010: Project Start



April 2012: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/139427)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Teranovi Technologies

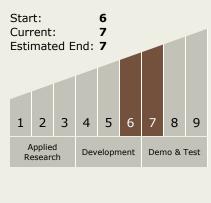
#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

# **Project Management**

#### **Program Director:**

Jason L Kessler


## **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Xudong Wang

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II



Completed Technology Project (2010 - 2012)

# **Technology Areas**

#### **Primary:**

TX05 Communications,
 Navigation, and Orbital
 Debris Tracking and
 Characterization Systems
 — TX05.3 Internetworking
 — TX05.3.2 Adaptive
 Network Topology

# **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

